General Floor Problems

Speaker: Goh Siang Wee Company: Sto SEA Pte Ltd

Title: Head of Regional Technical Support & Training (SEA) – CRS & Flooring

Most annoying flooring problems that Architects hate

i) 90% of all peeling is associated with poor surface preparation

Peeling

Peeling

i) 90% of all peeling is associated with poor surface preparationii) Weak substrate

Peeling

- i) 90% of all peeling is associated with poor surface preparationii) Weak substrate
- iii) Wrong primers

USE SUITABLE PRIMER, FOR EXAMPLES

Use Oil Blocker Primer

Use Moisture Tolerant Primer

Inconsistent colours

i) High relative humidity

Provide good ventilation

CHECK SURFACE TEMPERATURE 3°C ABOVE DEW POINT

i) High relative humidityii) Batch colour tone issue

Inconsistent colours

Practise batch number re-ordering

i) Substrate unevenness

Uneven finishing

Bubbling

i) Rising dampness

Bubbling or Blistering when floor is in contact with the ground

Bubbling

i) Rising dampness

Bubbling or Blistering when floor is in contact with the ground

Bubbling

i) Rising dampness

Bubbling or Blistering when floor is in contact with the ground

Quiz

• What causes rising dampness in coating?

Vapour pressure

Hydrostatic pressure

Osmotic pressure

Design criteria of floor coating

EN 1504-2:2004 (E)

No. of Table 1	Performance Characteristics	Test method	Requirements	
1	2	3	4	
15	Pull-off test	EN 1542	Average [N/mm²]	
	 Reference substrate: MC (0,40) as specified in EN 1766 curing 28 days for one component systems, cement containing and PCC-systems 		Crack-bridging or/ Rigid systems ^c flexible systems	
		with <mark>with</mark>	without trafficking: $\geq 0,8 \ (0,5)^{b}$ $\geq 1,0 \ (0,7)^{b}$	
	— 7 days for reactive resin systems.		\sim 1.5 (1.0) \sim 22.0 (1.5)	

Table 5 — Performance requirements for coatings

Conversion

• 1.5 N/mm² =

Metric			≈ hide ≈				
× clear form			Convert Me				
bar	15	tonne per square centimeter	0.0153				
kilopascal (kPa)	1,500	kilogram per square meter (kgf/m²)	152,957				
hectopascal (hPa)	15,000	tonne per square meter	153				
megapascal (MPa)	1.5	newton per square meter (N/m ²)	1,500,000				
millibar	15,000	kilonewton per square meter (kN/m²)	1,500				
pascal (Pa)	1,500,000	meganewton per square meter (MN/m²)	1.5				
gram per square centimeter (gf/cm²)	15,296	newton per square centimeter (N/cm²)	150				
kilogram per square centimeter (kgf/cm²)	15.3	newton per square millimeter (N/mm ²)	1.5				
Water (at 39.2°F, 4°C) * hide *							
× clear form			Convert Me				
meter of water	153	millimeter of water	152,957				
centimeter of water	15,296	foot of water	501.8				
		inch of water	6,022				

Source from http://www.convert-me.com/en/convert/pressure/

Rising dampness What are the causes?

Vapour pressure inder the coating

- Vapour pressure @ 10 S, i.e. Steam
- 1,500 kPa = 1.5 N/mm²
- 101 kPa = 0.1 N/mm²
- Not high enough to cause blistering

Temperature (°C)	Vapour pressure (kPa)	Vapour pressur (mmHg
25	3.2	23.8
26	3.4	25.2
27	3.6	26.7
28	3.8	28.4
29	4.0	30.0
30	4.2	31.5
32	4.8	36.0
35	5.6	42.0
40	7.4	55.5
50	12.3	92.3
60	19.9	149.3
70	31.2	234.1
80	47.3	354.9
90	70.1	525.9
100	101.3	760.0

Rising dampness What are the causes?

Hydrostatic pressure under the coating

- In practice normally more than 20 m of water head
- ≈150 m = 1.5 N/mm²
- 20 m = 0.2 N/mm^2
- Not high enough to cause blistering

Hydrostatic pressure

Rising dampness What are the causes?

- Osmotic pressure
 - Osmosis

Rising dampness Osmotic effect

Osmosis

Definition:

slow change in concentration: the diffusion of a solvent (water) through a semipermeable membrane² from a dilute to a more concentrated solution³

Rising dampness Osmotic effect

Osmotic pressure

Definition:

The pressure required to prevent the passage of water through a semipermeable membrane from a region of low concentration of solutes to one of higher concentration, **by osmosis**

An example of osmotic effect

Osmosis

An example of osmotic effect

Osmosis

An example of osmotic effect

Osmosis

Sodium Chloride Solution (NaCl): 6.0%

Temperature 10°C : Osmotic pressure : 5N /mm²

Ļ

Temperature 100°C: Osmotic pressure : 6.6N /mm²

Osmotic blistering on non-vapour permeable epoxy coating

Solution Vapour diffusion system

Breathable Water-based epoxy system

Solution Vapour diffusion system

Solution Vapour diffusion system

Breathable Water-based Epoxy Coating Non-breathable Solvent-free Epoxy Coating

Smooth System components

- 1. Concrete substrate
- 2. Water-based Primer
- 3. Water-based Intermediate coat
- 4. Water-based topcoat

Cleanroom of semi-conductor factory, 2004, Singapore

Handicap lots at Devan Nair Institute, 2013, Singapore

Warehouse at Port of Tanjung Pelepas, 2012, Malaysia

Staircase at PTW Freiburg, Germany

3

Anti-skid – filler integrated System components

- 1 Concrete substrate
- 2 Water-based Primer
- 3 Water-based Intermediate coat with integrated anti-
- 4 Water-based Topcoat with integrated anti-skid filler

Anti-skid – filler integrated System components

- Skid test using British Pendulum Tester (ASTM E 303:93)
- Car park > 55 BPN (Wet)

Water vapour permeable system Integrated with anti-skid filler : Year 2022 (After 17 Years)

Water vapour permeable system Year 2022 (After 17 Years)

Public housing's lobby, 2007, Singapore Planners | Town council

St Joseph Convent School, Thailand With UV resistant topcoat

Anti-skid – sand broadcast System components

- L. Concrete substrate
- 2. Water-based Primer
- 3. Scattered coat of quartz sand
- 4. Water-based Intermediate coat
- 5. Water-based Topcoat

The One North @ Rochester, 2011, Singapore Planners | CPG Consultants, in partnership with Tange Associates

The One North @ Rochester, 2011, Singapore Planners | CPG Consultants, in partnership with Tange Associates Water vapour permeable system : Year 2022 (After 11 Years) Anti-skid with sand broadcast

The Wharf Condominum, 2012, Singapore

Water vapour permeable system : Year 2013 Anti-skid with sand broadcast

Water vapour permeable system Year 2022 (After 9 Years) Anti-skid with sand broadcast

Commercial building at 30 Hill Street, 2012, Singapore

Water vapour permeable system : Year 2022 (10 Years) Anti-skid with sand broadcast

NTUC FairPrice Hub (Warehouse club), 28,000m², 2014, Singapore Planners | ADDP Architects LLP

Water vapour permeable system : Year 2022 (After 8 Years) Anti-skid with sand broadcast

Vapour diffusion system Transparent water-based epoxy sealing

Chips with transparent sealing System components Concrete substrate 1. Water-based Primer 2. Water-based Intermediate coat 3. Chips 1mm or 3mm 4. 5. Water-based Topcoat, transparent 5 1

Transparent water-based epoxy sealing

Decorative floor coating Chips 1mm system

Anderson Primary School, 1,250m², 2015, Singapore Planners | Inter Consultant Pte Ltd

Vapour diffusion system Scratch coat to level unevenness

Water-based Scratch coat System components

- L. Concrete substrate
- 2. Water-based Primer
- 3. Water-based Scratch coat
- 4. Water-based Intermediate coat
- 5. Water-based Topcoat

1

2

3

5

Vapour diffusion system Scratch coat to level unevenness

Vapour diffusion system Scratch coat to level unevenness

Vapour diffusion system Self-leveling water-based epoxy floor

Thick coating System components

Vapour diffusion system Self-levelling water-based epoxy floor

Sto SEA Pte Ltd, 2015, Singapore

Other benefits of vapour diffusible water-based epoxy floor coating

- Water vapour permeable
- Water impermeable
- Solvent-free
- No Benzl alcohol and Nonylphenol (plasticisers)
- Suitable for office and residential
- Low VOC emissions
- Suitable for use in food processing industry
- Suitable for cleanrooms
- Almost no odour during application
- Tools can be cleaned with water
- Many colours available (RAL/StoColorSystem ...)
- Plasticiser resistant (car tyres)
- Less yellowing than standard solvent free epoxy

StoCreter Gmbl

Membership

Yellowing test

Water-based epoxy

Yellowing test

Standard Solvent-free epoxy

Yellowing test Water-based self-levelling

Other benefits of water-based epoxy floor coating

- Water vapour permeable
- Water impermeable
- Solvent-free
- No Benzl alcohol and Nonylphenol (plasticisers)
- Suitable for office and residential
- Low VOC emissions
- Suitable for use in food processing industry
- Suitable for cleanrooms
- Almost no odour during application
- Tools can be cleaned with water
- Many colours available (RAL/StoColorSystem ...)
- Plasticiser resistant (car tyres)
- Less yellowing than standard solvent free epoxy

Conclusion

Preventive measures

SINGAPORE GREEN BUILDING PRODUCT SGBC

THANK YOU! ขอบคุณ**!**