

AGENDA

Foam Insulation in Building

Material

Insulated
Roof & Wall
Performance
& Safety

Installation & Reference Application

AGENDA

Foam Insulation in Building

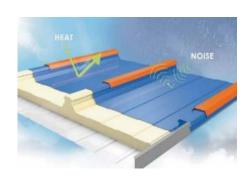
Material

Insulated
Roof & Wall
Performance
& Safety

Installation & Reference Application

Thailand Construction Insulation

- Mineral / Rock / Stone Wool
- Glass wool
- EPDM
- Air Bubble
- PE Foam (Polyethylene)
- EPS & XPS Foam
- PUR & PIR Foam (Polyiso)
- Phenolic Foam

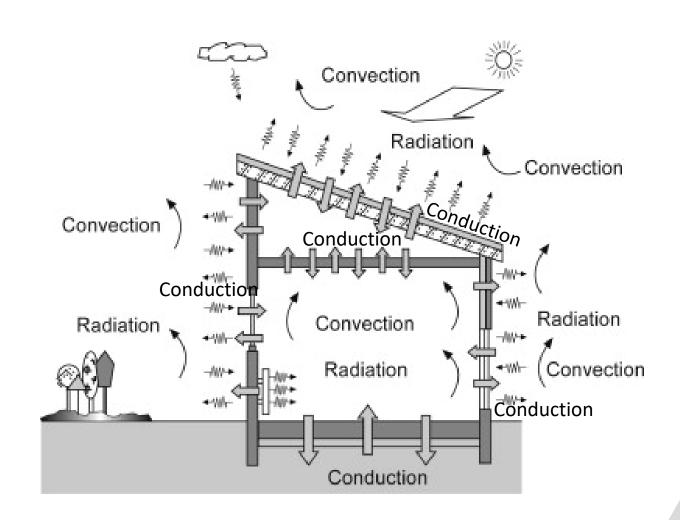


Heat Transfer

Conduction

Heat moves towards Cool

Convection


Heat warms surrounding air causing air movement

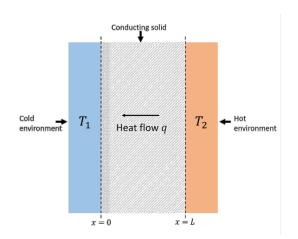
Radiation

"...building insulation is the most cost-effective solution to reduce energy and greenhouse gases."

McKinsey Global Institute

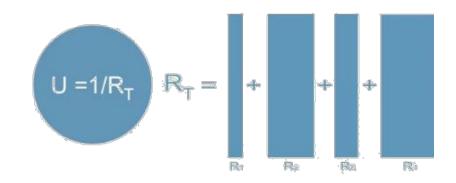
Thermal Conduction: Key Consider

Thermal Conductivity


K-Value/Factor or Lambda (λ)

Thermal Resistance

R-Value or RSI (SI system)


Thermal Transmittance

U-Value / U-factor

- <u>Lower</u> K-Value
- <u>Higher</u> R-Value
- <u>Lower</u> U-Value

$$R = \frac{t}{\lambda} = \frac{Thickness\ of\ material}{Thermal\ conductivity}$$

Building Energy Concern

เล่ม ๑๒๖ ฅอนพิเศษ ๑๒๒ ง

ราชกิจจานุเบกษา

ಅಜ ನೆಯಗಾಗಿಸ ಅಪಪಡ

ประกาศกระทรวงพลังงาน

เรื่อง หลักเกณฑ์และวิธีการคำนวณในการออกแบบอาคารแต่ละระบบ การใช้พลังงานโดยรวมของอาคาร และการใช้พลังงานหมุนเวียนในระบบต่าง ๆ ของอาคาร

พ.ศ. ๒๕๕๒

อาศัยอำนาจตามความในข้อ ๑๐ แห่งกฎกระทรวงกำหนดประเภท หรือขนาดของอาคาร และมาตรจาน หลักเกณฑ์และวิธีการในการออกแบบอาคารเพื่อการอนรักษ์พลังงาน พ.ศ. ๒๕๕๒ ออกตามความในพระราชบัญญัติการส่งเสริมการอนุรักษ์พลังงาน พ.ศ. ๒๕๓๕ ซึ่งแก้ไขเพิ่มเติมโดย พระราชบัญญัติการส่งเสริมการอนรักษ์พลังงาน (ฉบับที่๒) พ.ศ. ๒๕๕๐ อันเป็นกฎหมายที่มี บทบัญญัติบางประการเกี่ยวกับการจำกัดสิทธิ และเสรีภาพของบุคคล ซึ่งมาตรา ๒๕ ประกอบกับ มาตรา ๓๓ มาตรา ๔๑ และมาตรา ๔๓ ของรัฐธรรมนูญแห่งราชอาณาจักรไทย บัญญัติให้กระทำใด้ โดยใช้อำนาจตามบทบัญญัติแห่งกฎหมาย รัฐมนตรีว่าการกระทรวงพลังงาน จึงออกประกาศไว้ ดังต่อไปนี้

ข้อ ๑ ในประกาศนี้

"อาคาร" หมายความว่า อาคารตามข้อ ๒ ของกฎกระทรวงว่าด้วยการกำหนดประเภท หรือขนาคของอาคาร และมาตรฐาน หลักเกณฑ์และวิธีการในการออกแบบอาคารเพื่อการอนุรักษ์พลังงาน พ.ศ. ๒๕๕๒ ซึ่งออกตามความในพระราชบัญญัติการส่งเสริมและการอนุรักษ์พลังงาน พ.ศ. ๒๕๓๕

"อาคารอ้างอิง" หมายความว่า อาคารที่มีการออกแบบให้มีพื้นที่การใช้งาน ที่ตั้ง ทิศทาง พื้นที่กรอบอาคารแต่ละด้าน และลักษณะการใช้งานเช่นเดียวกับอาคารที่จะก่อสร้างหรือดัดแปลง โดยอาคารดังกล่าวนั้นต้องมีค่าของระบบกรอบอาคาร ระบบไฟฟ้าแสงสว่าง และระบบปรับอากาศ เป็นไปตามข้อกำหนดของแต่ละระบบ

ทมวด ๑

การคำนวณค่าการถ่ายเทความร้อนรวมของระบบกรอบอาคาร

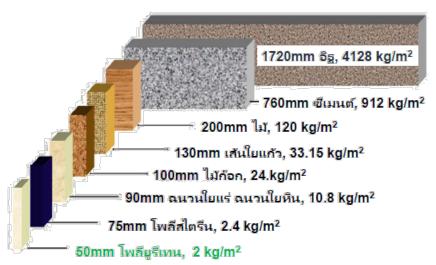
ส่วนที่๑

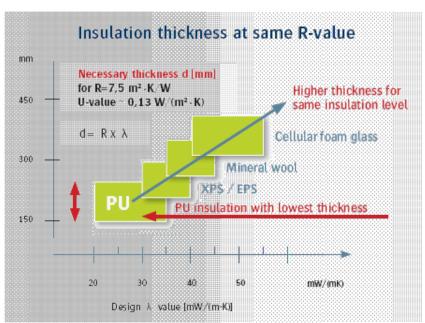
การคำนวณค่าการถ่ายเทความร้อนรวมของผนังด้านนอกอาคาร

ข้อ 🖢 การคำนวณค่าการถ่ายเทความร้อนรวมของผนังด้านนอกของอาคาร ให้คำนวณ ตามหลักเกณฑ์และวิธีการที่กำหนดดังต่อไปนี้

- OTTV: Overall Thermal Transfer Value
- RTTV: Roof Thermal Transfer Value

(๒.๕) ค่าสัมประสิทธิ์การนำความร้อน (k) และคุณสมบัติอื่นๆ ของวัสดุ สำหรับวัสดุที่ใช้ในงานก่อสร้างทั่วๆ ไป ให้ใช้ค่าสัมประสิทธิ์การนำความร้อน ของวัสดุ (thermal conductivity,k) ซึ่งมีหน่วยเป็นวัตต์ต่อเมตร - องคาเซลเซียส (W/(m.°C)) ความหนาแน่น ของวัสดุ (density, p) ซึ่งมีหน่วยเป็นกิโลกรัมต่อลูกบาศก์เมตร (kg/m²) และค่าความร้อนจำเพาะ (specific heat, c,) ซึ่งมีหน่วยเป็นกิโลจูลต่อกิโลกรัม - องศาเซลเซียส (kJ/(kg.°C)) ตามที่กำหนด ในตารางที่ ๑.๓ ดังต่อไปนี้


Building Material k-value


ตารางที่ ๑.๑ ค่าสัมประสิทธิ์การนำความร้อน (+) ความหนาแน่น (ho) และค่าความร้อนจำเพาะ (c_p) ของวัสคุชนิดต่าง ๆ

ลำดับ	กับ วัสดู	k	ρ	c_p
EI INID	क्षाम्	(W/(m . °C))	(kg/m³)	(kJ/(kg. °C))
ഩ	ผนังอิฐ/คอนกรีต	<u> </u>		
	(n) อิฐมอญไม่ฉาบ	0.රැඹක	စဉ်ဝဝ	೦.೫೯
	(ข) อิฐมอญฉาบปูนสองหน้า	ത.രായ	၈၈)၀၀	0.බදි
	(ค) อิฐฉาบปูนหรือปิดด้วยแผ่นโมเสดหรือกระเบื้อง หน้าเดียว	0.ස්0ඹ	ဝင်လစ	ಂ.ಡೆಡೆ
	(ง) คอนกรีตบล็อกกลวง ๘๐ มม. ไม่ฉาบ	0.డడ5	ഠമയി	o.ಕle
	(จ) คอนกรีตสแลบ	ଭ.ଝ.ଝାଞ	ഇ ർ00	o.6@
	(ฉ) ปูนฉาบ (ซีเมนค์ผสมทราย)	ഠ.നിയ	ಂಡಕಾಂ	೦.ಡ ಡ
ć.	คอนกรีตมวลเบา ความหนาแน่นต่างๆ			
	(ก) ๖๒๐ กิโลกรัม/ลูกบาศก์เมตร	೦.೧೮೦	ഠയർ	೦.ಡ&
	(ข) ๗๐๐ กิโลกรัม/ลูกบาศก์เมตร	ഠ.ഇഒഠ	ത്രം	೦.ಡ ಡ
	(ค) ๕๖๐ กิโลกรัม/ลูกบาศก์เมตร	0.ສ0ສ	650	೦.ಡ ಡ
	(ง) ๑๑๒๐ กิโลกรัม/ลูกบาศก์เมตร	o.ක ර ්ව	യെര	೦.ಡ&
	(จ) ๑๒๘๐ กิโลกรัม/ลูกบาศก์เมตร	೦.ಡಣಿಶ	യെദ്ര	0.ಡ&

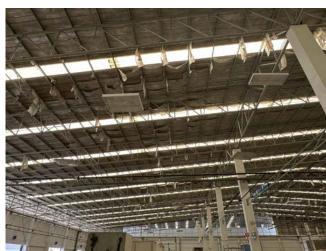
	1	1		i		
Ъ	ฉนวนใยแก้ว (ไฟเบอร์กลาส)					
	แบบม้วน (blanket) แบบแผ่น (rigid board) และแบบท่อสำเร็จ (rigid pipe section)					
	(ก) ความหนาแน่น ๑๐ กิโลกรัม/ลูกบาศก์เมตร	૦.૦૯.៦	90	ం.క ర్		
	(ข) ความหนาแน่น ๑๒ กิโลกรัม/ลูกบาศก์เมตร	o.o&@	@	o. € Ъ		
	(ค) ความหนาแน่น ๑๖ กิโลกรัม/ลูกบาศก์เมตร	0.0៣ಚ	6 b	o.&b		
	(ง) ความหนาแน่น ๒๔ กิโลกรัม/ลูกบาศก์เมตร	0.0ක දි	ଜ ଝ	o.£Ъ		
	(จ) ความหนาแน่น ๓๒-๔๘ กิโลกรัม/ลูกบาศก์เมตร	0.0 mm	ගම - රැස්	o.5'b		
	(ฉ) ความหนาแน่น ๕๖-๖៩ กิโลกรัม/ลูกบาศก์เมตร	୦.୦ଜର	డిర్ - రీక	ი.ნЪ		
တ	ฉนวนใยหินแบบม้วน (blanket) และแบบแผ่น (rigid board)					
	ความหนาแน่น ๖.๔ - ๓๒	0.0කදි	ව. ໔ - ෨ඐ	ಂ.ಚ		
ಚ	ฉนวนชนิคโฟมโพลีสไตรีน แบบขยายคัว					
	(ก) ความหนาแน่น ៩ กิโลกรัม/ลูกบาศก์เมตร	୦.୦ଝଡ	દ	o.leo		
	(ข) ความหนาแน่น ๑๖ กิโลกรัม/ลูกบาศก์เมตร	0.0 ගග	6 6	g.leg		
	(ค) ความหนาแน่น ๒๐ กิโลกรัม/ลูกบาศก์เมตร	ဝ.ဝ၈၁	© 0	o.leo		
	(ง) ความหนาแน่น ๒๔ - ๓๒ กิโลกรัม/ลูกบาศก์เมฅร	0.0කරී	මරු - ගම	o.leo		
É	โฟม โพลีเอทิลีน	ం.ం!అక	હહ	<u>ം.</u> ഇം		
90	โฟม โพลียูรีเทน	0.0២៣ -	මර - ර _් ර	ඉ.දී දි		
	-	ർലം.o				

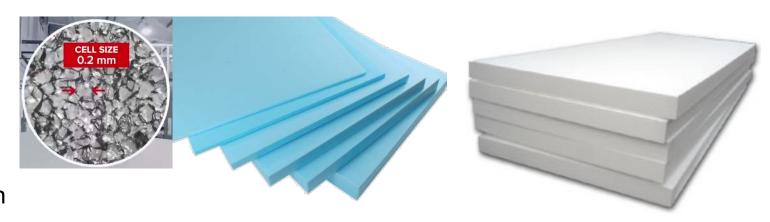
Insulation Material Thermal Parameters

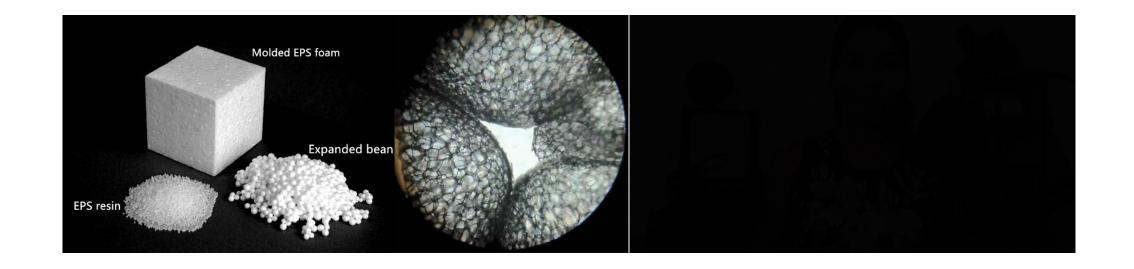
K-value & R-value Table @ 24°C/75°F						
	K-value		R-value			
Material	W/m.K	Btu.ft/ ft ² .hr.F	m²K/W	ft ² .hr.F/ Btu	per inch	
Copper	399					
Steel	50					
Brick (2SP)	1.10	0.925	1.081	0.09	R-0.1	
Cement	0.72	0.416	2.402	0.20	R-0.2	
Gypsum	0.51	0.295	3.391	0.28	R-0.3	
Wood	0.15	0.087	11.531	0.96	R-1.0	
Glass wool	0.044	0.025	39.309	3.28	R-3.3	
Cork board	0.043	0.025	40.223	3.35	R-3.4	
PE foam	0.040	0.023	43.239	3.60	R-3.6	
Mineral wool	0.038	0.024	41.180	3.43	R-3.4	
EPDM	0.036	0.021	48.044	4.00	R-4.0	
EPS	0.034	0.020	50.870	4.24	R-4.2	
PUR/PIR	0.023	0.013	75.199	6.27	R-6.3	

Reference: Insulation for sustainability: A guide, XCO2 Conisbee 2002

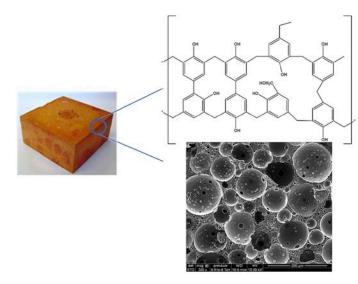
PE Foam


- PE (Polyethylene)
- Thermoplastic Polymer
- Roof application
- Lowest roof insulation cost
- Generally, apply glue to metal roof
- Concern on glue's life expire



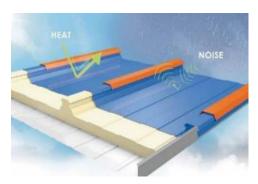


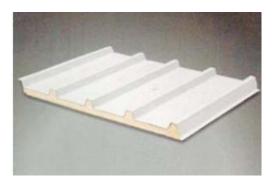
EPS & XPS Foam


- Expanded Polystyrene (EPS)
- Extruded Polystyrene (XPS)
- Thermoplastic polymer
- Lowest cost for sandwich wall insulation

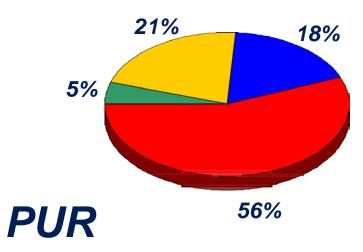
Phenolic Foam

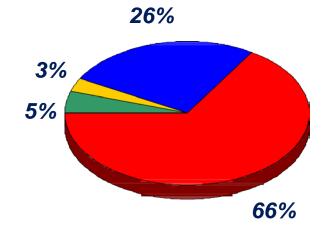
- Thermosetting Polymer
- Application: Pre-insulated Duct
 (PID), Pipe and board insulation
- Very good thermal performance
- Corrosion property



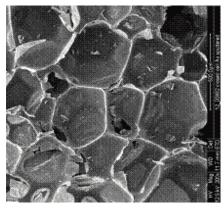

PUR & PIR Foam

- PUR (Polyurethane Rigid Foam)
- PIR (Polyisocyanurate, Polyiso)
- Thermosetting Polymer
- Rigid foam contain insulation gas
- Variety of application: fridge, truck, roof, panel, pipe,

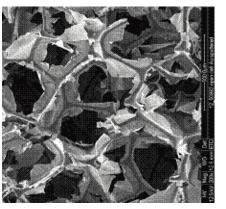



PUR & PIR Foam Difference

PIR


- Additives
- Polyol

- **■** Flame Retardant
- Isocyanate


Polyurethane in Roof Market

	Topic	TYPE 1	TYPE 2	TYPE 3	TYPE 4
1	PU Type	PU Rigid	PU Rigid	PU Flexible	PIR (only rigid)
2	Foam Cell	Close-cell	Close-cell	Open-cell	Close-cell
3	Recipe (blowing agent)	Pentane / HFC / HFO	Water	Water	Pentane / HFC / HFO
4	% Close cell	≥ 90%	60-70%	≤ 20%	≥ 95%
5	Overall Density	30-35	40-50	25-30	35-40
6	% Water Content in Chemical	2%	2-3%	5-8%	≤ 1%
7	% PU Water Absorption	< 3%	< 5%	> 40%	< 3%
8	K-Value (W/mK)	0.023	0.028	0.034	0.023
9	R-Value @ 25mm (m ² K/W)	1.087	0.893	0.735	1.087
10	U-Value (W/m²K)	0.92	1.12	1.36	0.92
11	Heat Penetration Comparison	0%	22%	48%	0%
12	Fire Resistance & Reaction to Fire	-Reaction to fire -Self-extinguished -UL94	-No class -Self-extinguished	-No class (Fire spread by the air in foam-cell)	- Fire resistance & Reaction to fire- UL94, B1, B2- FM4880 Class1- FM4471 Class1
14	Strength & Rigidity	High	Medium-high	Low	High
15	Sound Absorption	Medium	Medium-high	High	Medium
16	Price	Medium	Medium	Low	High

Close-cell

Open-cell

<5%

<5%

>85%

<5%

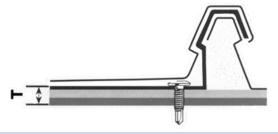
AGENDA

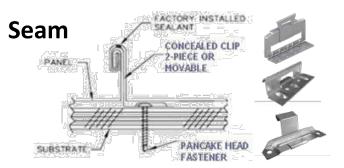
Foam Insulation in Building

Material

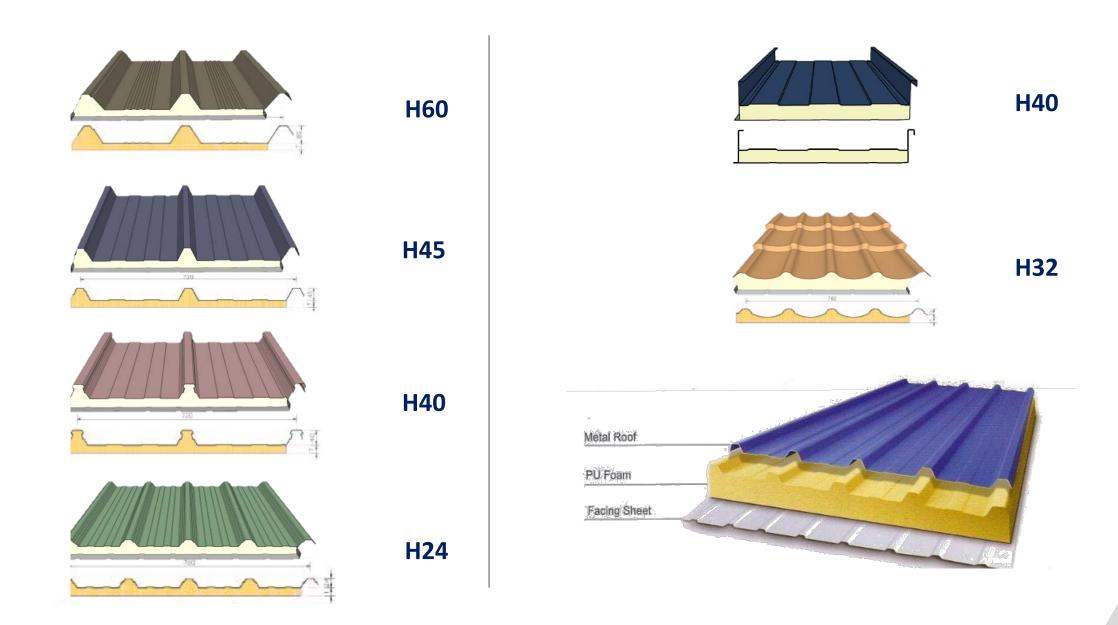

Insulated
Roof & Wall
Performance
& Safety

Installation & Reference Application


Roof Profile Type


Bolt

Type


Boltless

Length	Up to 27 m (trailer transport) Max 70 m (overlapping at site)	Up to 27 m (trailer transport) Up to 120 m (on-site forming)	Up to 27 m (trailer transport) Up to 120 m (on-site forming)
Wind uplift	Up to 300 km/h	Up to 250 km/h	Up to 350 km/h
Shape & Curving	Crimp curve and Sprung curve	Crimp curve and Sprung curve	Convex and Tapered
Characteristic	- Economy- The fastest type installation	For long length roof span	Install with more design shape Low slope installation (start from 1°)
Limitation	 Need to choose the right rib height and screw class Screw durability (optional to add cap cover sheet) Risk of leakage due to the screw hole expansion in case L>60 m 	 Not recommend for overlaping installation (solved by expansion joint) Connectors & purlin alignment focus G550 & minimum 0.47TCT is recommended Blown open by gust of wind (recommend to fasten with screw at roof corners) Could be rusty by the abrasion at connector area 	 Need more skilled workers to install the seaming area for the better look Rust by abrasion at connector area (solved by unfixed connector) Can occur oil canning esp. G300 (solved by structural embossed ribs & G550)
Reparation	Easy	Medium	Hard

Foam Insulation in Metal Roof

Fire Concern by Insurance Company

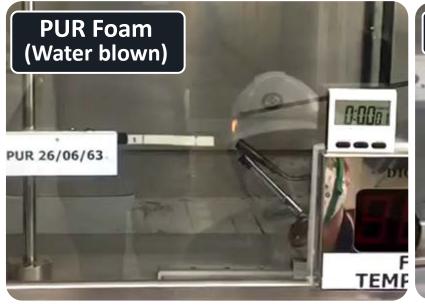
Fire and Explosion Count: 76 (38%) Gross: \$1,049 M (39%)

Boiler and Machinery Count: 33 (16%) Gross: \$518 M (19%)

Natural Hazards
Count: 41 (20%)
Gross: \$401 M (15%)

Why Insulation Fire Performance?

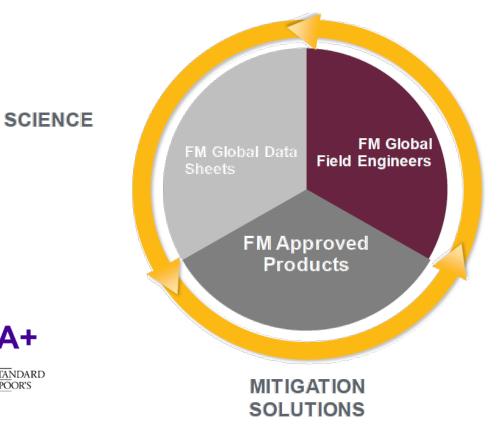
- Limit / Minimize loss
- Save Life & Assets
- Business Resilience
- Insurance Benefits



Reaction to Fire - UL94 Comparison

PIR Roof & Sandwich Wall Recommended Standard

Standard	Detail	
FM 4471 (PIR Roof)	Approval Standard for Class 1 Panel Roofs	
FM 4880 (PIR Sandwich Panel)	Approval Standard for Class 1 Fire Rating of Building Panels or Interior Finish Materials	
FM 4881 (PIR Sandwich Panel)	Approval Standard for Class 1 Exterior Wall Systems	
BS EN 13501-1:2007 +A1: 2009 (Euroclass / EU Std.)	Reaction to fire classification: B-s1,d0	
BS 476 part 20 & 22	Pass: >1 hr	
BS 476 part 6 & 7	Class 0	
ASTM E84 / UL 723	Standard Method of Test for Surface Burning Characteristics of Building Materials	
UL94	HBF Rating (Self-extinguished)	
ASTM C518:2017	0.023 W/mK @24°C	
AS 1562.1-1992, AS 4040.2-1992	Wind speed resistance up >250 km/hr	
Determination of VOC emissions evaluation as per LEED v4.1	TVOC and Formaldehyde not detect	

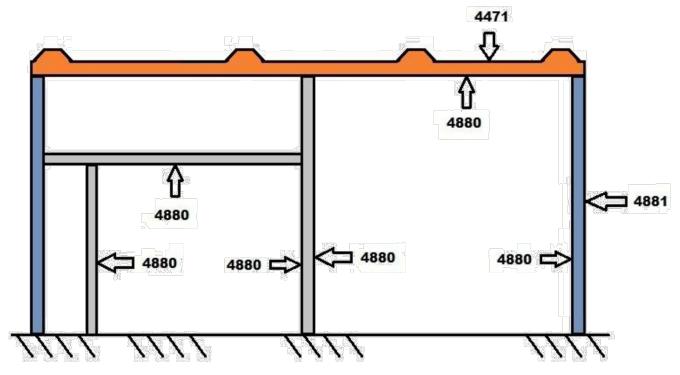


Why FM?

- Project property insurance requirement
- Performance & system-based testing and certification
- International product listing scheme similar to e.g. EU CE Mark, Singapore PLS
- Surveillance Audit

ENGINEERING

% BEST



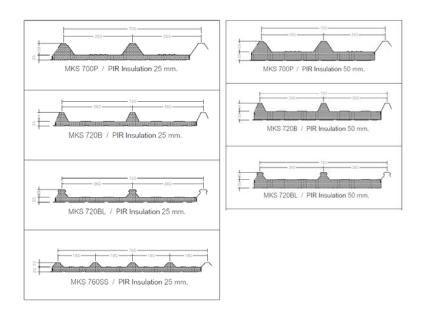
FM Approved – Roof & Wall

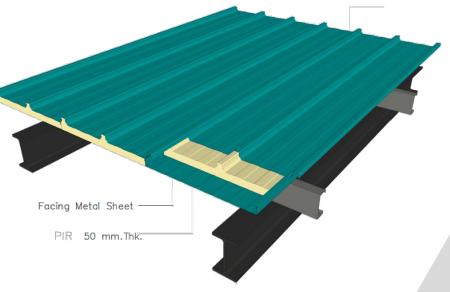
4471	Class 1 Panel Roofs
4880	Class 1 Insulated Wall and Ceiling Panels - Fire
4881	Class 1 Exterior Wall systems

Reduce Clients' Risks

Global Loss Prevention Solutions

Global Acceptance of FM Approved
Products


Risk on Roofing



FM4471 Class 1 Panel Roofs

No	List Testing	Procedure	Result
1	Combustibility – From Above Roof Assembly	ASTM E-108 Spread of Flame	Pass Class A with Slope within 22.6°
2	Combustibility – From Below Roof Assembly	NFPA276 Materials Calorimeter Test	Pass (30 mins test)
3	Wind Uplift Resistance	12 x 24ft Wind Uplift Testing (3.6x7.4m) 1 min holding at every 15 psf	Pass at minimum 60 psf
4	Foot Traffic Resistance	The ability of the panel roof assembly to resist foot traffic (200-pound weight) without puncture of the panel roof, no separation or disengagement of the side or end laps	Pass
5	Hail Damage Resistance	no evidence of puncture or chipping, peeling, blistering, cracking, or crazing of the coating when examined under 10X magnification	Pass with 12 points severe hail criteria
6	UV Resistance	QUV testing procedure	During 1,000 hrs test

FM4471 – Fire test

1. ASTM E-108 Spread of Flame Testing

Sample:	Panel	Length	Thickness	Width	Interior/Exterior Facer
энири.	MKS 720B	2.44 m	50 mm	720 mm	0.23 / 0.47 mm

Results: PASS Class A 5/12 slope

2. Materials Calorimeter Test (NFPA 276)

Sample:	Panel	Length	Thickness	Width	Interior/Exterior Facer
Sumpre.	MKS 700P	2.44 m	50 mm	$700 \mathrm{mm}$	0.23 / 0.47 mm

Results: PASS

FM4471 – Fire Test Fail Example

Example of FAIL RESULT of ASTM E108

Fire spread to the edge of Panel Roof Sample

FM4471 – Wind Uplift Test

3. 12 x 24 Wind Uplift Testing

 Panel
 Length
 Thickness
 Width
 Interior/Exterior Facer

 MKS 720BL
 2.44 m
 25 mm
 720 mm
 0.23 / 0.47 mm

Supports: 200 mm tall x 80 mm wide x 1.5 mm thick steel C-Channels, spaced 1500 mm on center

Fasteners: FM Approved intersection

= 29 mbar = 247 km/h

Results: PASS at 60 PSF

" / "

very rib/purlin

4. 12 x 24 Wind Uplift Testing

 Panel
 Length
 Thickness
 Width
 Interior/Exterior Facer

 MKS 760SS
 2.44 m
 25 mm
 760 mm
 0.23 / 0.47 mm

Supports: 200 mm tall x 80 mm wide x 1.5 mm thick steel C-Channels, spaced 1500 mm on center

Fasteners: FM Approved intersection

= 44 mbar = 301 km/h

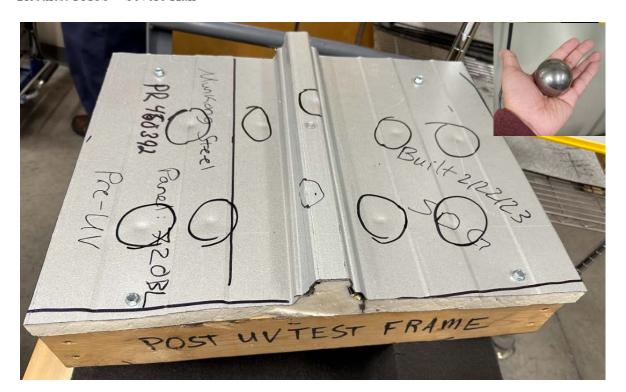
every rib/purlin

Results: PASS at 90 PSF

FM4471 – Foot traffic & Hail resistance

0.23 / 0.47 mm

Foot Traffic Testing


Thickness Width Interior/Exterior Facer Panel Length Sample: MKS 720BL 2.44 m 25 mm 720 mm

Results: PASS

7. Pre/Post-UV Hail Testing

Interior/Exterior Facer Panel Length **Thickness** Width Sample: MKS 720BL 2.44 m 25 mm 720 mm 0.23 / 0.47 mm

Results: PASS - Severe Hail

Roof FM4471 Certificate Example

https://roofnav.app.fmglobal.com/

Not to be distributed outside of FM Approvals and its affiliates except by Customer

APPROVAL REPORT

Project No: PR460392

Class: 4471

Product Name: MKS PIR 700P Roof Panel, MKS PIR 720B Roof Panel, MKS PIR 720B Roof Panel, MKS PIR 760SS Roof Panel

Name of Listing Company: Munkong Steel Public Company Limited

Address of Listing Company: 1/348 Soi Onnuch 59/1,

Sukhumvit 77 Rd, Prawet Bangkok 10250

Thailand

Customer ID: 244716-1

Customer website: http://www.munkongsteel.com

Prepared by

30

Advanced Engineer

Reviewed by

Blood Holm

R. Scott Holmes Operations VP, Group Manager, Materials

Chilly J. South

Phillip J. Smith VP, Manager of Materials

27 July 2023 Date of Approval

FM Approvals 1151 Boston-Providence Tumpike PO Box 9102 Norwood, MA 02062

Page 1 of 5

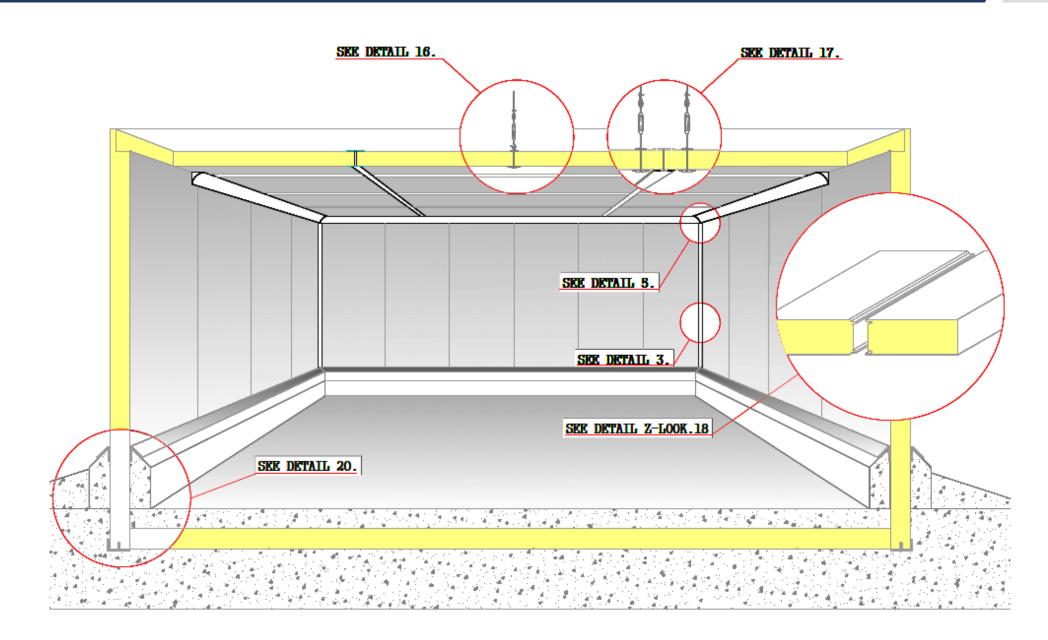
Sandwich Panel Insulation

"Sandwich Panel" / "Sandwich Wall" / "ISOwall" / "Insulated Metal Panel (IMP)"

50+	Years
20+	Years
10+	Years
8	Years
5	Years

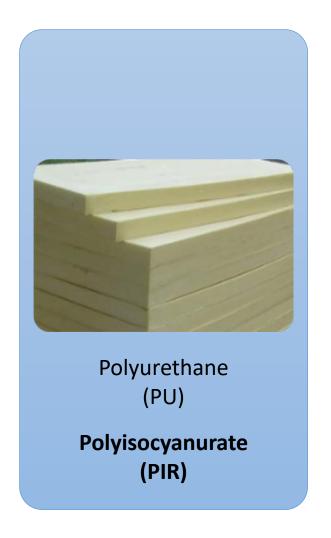
EPS Sandwich Panel in Thailand cold storage industry

PU Sandwich Panel in Japanese-owner cold-chain logistic


Imported PIR Sandwich Panel in European-owner cold storage

PIR Sandwich Panel local made

FM Approved PIR Sandwich Panel local made



Sandwich Panel in Cold Chain Facility

Sandwich Panel Insulation in Thailand

How to Select Insulation for Panel

PIR (Polyisocyanurate)	Factors	Rockwool	
Close cell insulation	Insulation Structure	Fibrous insulation Fibrous insulation	
High R-Value	Thermal Performance	Lower R-Value	
Resistance to moisture	Moisture Resistance	Absorb moisture in long term	
Reaction to Fire	Fire Performance	Fire Resistance	
Lighter weight	Structure Load	Heavier weight	
Moderate	Initial Cost	Slightly higher (by labor cost)	
Food processing, Cold storage, Cleanroom, other buildings	Application Scenarios	Data Center, Cleanroom, Painting Line, other buildings	

Thickness Selection (k-value 0.023 w/m²)

Optimization Heat Flow Design (Q)

8-10 Watt/m²

(See IACSC Code of Practice for the design of cold storage envelopes)

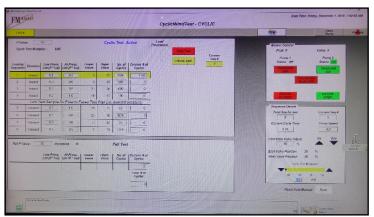
Goal Temp (°C)	ΔT (°C)	Panel Thickness (mm)									Optimization
		40	50	75	100	125	150	200	250	300	mm (W/m²)
	U (W/m ² .K)	0.58	0.46	0.31	0.23	0.18	0.15	0.12	0.09	0.08	K-Value:
	R (m ² .K/W)	1.72	2.17	3.26	4.35	5.43	6.52	8.70	10.87	13.04	0.023 W/mK
25	15	8.63	6.90	4.60	3.45	2.76	2.30	1.73			40 (8.63)
20	20	11.50	9.20	6.13	4.60	3.68	3.07	2.30			50 (9.20)
15	25	14.38	11.50	7.67	5.75	4.60	3.83	2.88			75 (7.67)
10	30	17.25	13.80	9.20	6.90	5.52	4.60	3.45			75 (9.20)
5	35	20.13	16.10	10.73	8.05	6.44	5.37	4.03			100 (8.05)
0	40	23.00	18.40	12.27	9.20	7.36	6.13	4.60			100 (9.20)
-5	45	25.88	20.70	13.80	10.35	8.28	6.90	5.18			125 (8.28)
-10	50	28.75	23.00	15.33	11.50	9.20	7.67	5.75			125 (9.20)
-15	55	31.63	25.30	16.87	12.65	10.12	8.43	6.33			150 (8.43)
-20	60	34.50	27.60	18.40	13.80	11.04	9.20	6.90			150 (9.20)
-25	65	37.38	29.90	19.93	14.95	11.96	9.97	7.48			150 (9.97)
-30	70	40.25	32.20	21.47	16.10	12.88	10.73	8.05			200 (8.05)
-35	75	43.13	34.50	23.00	17.25	13.80	11.50	8.63			200 (8.63)
-40	80	46.00	36.80	24.53	18.40	14.72	12.27	9.20			200 (9.20)
		Unit: W/m² ♠									
		Low Investment /						Optimiza	ation		High Investment
		High Energy Loss						Line			Low Energy Loss

FM4880 & FM4881 System Test

FM 4880 Class1

- Room Test
- Parallel Panel Test
- Flammability
 Characterization of
 Insulation Core
- Heat Content
- Ash Content
- Combustion

FM4881 Wind Load Test



Criteria: inward 4,500 cycles & outward 4,500 cycles

FM4880 & FM4881 Test

FM4880 & FM4881 Certificate Example

https://www.approvalguide.com/

Reaction to Fire Testing

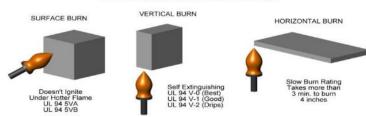
ASTM E84

- FSI & SDI criteria
- Class A, B, C

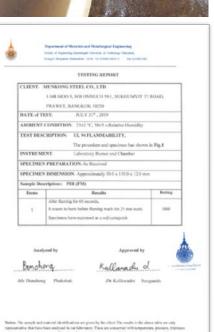
UL94

- Flammability Rating
- V0, V1, V2
- HBF, HF1, HF2

การทดสอบนี้ จะคล้ายกับการทดสอบในแนวนอน แต่วัสดุที่ทดสอบเป็นโฟม การจ่อ ไฟจะจ่อเป็นเวลา 60 วินาที ชิ้นงานยาว 150 mm. และจีดเส้นตำแหน่งไว้ที่ 25 mm, 60 mm และ 125 mm. โดยตำแหน่งการวัดอัตราการเผาใหม้อยู่ระหว่าง ระยะ 25 ฉึง 125 mm.

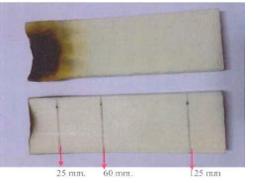

HBF Rating

- HBF ถ้าอัตราการใหม้ไม่เกิน 40 mm/min หรือ ติดใฟแต่ดับไปก่อนถึงขีดระยะ 125 mm.


-HF-1 ถ้าตัวอย่าง 4 ใน 5 ชิ้น มีการลามไฟภายใน 2 วินาที และเกิดลูกไฟหยดลง แต่สำลีข้างล่าง ไม่ติดไฟ

- HF-2 เกิดการติดไฟเหมือน HF-1 แต่สำลีติดไฟ


UL94 serves as a preliminary indication of a plastic's acceptability for use as part of a device or appliance with respect to its flammability. It is not intended to reflect the hazards of a material under actual fire conditions.



Reaction to Fire Europe Classification

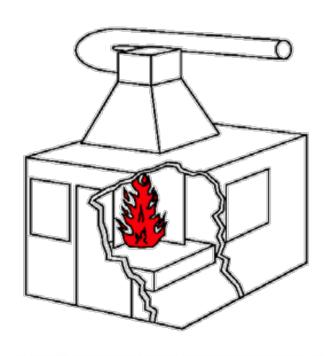
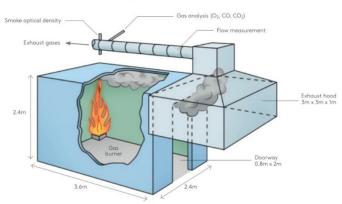
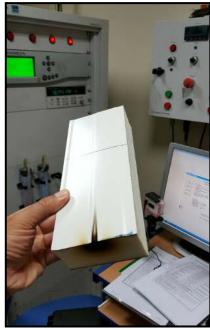
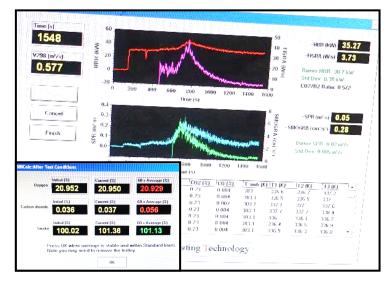
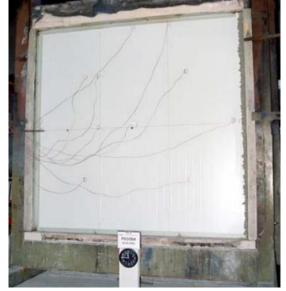



Figure 2. The AS ISO 9705 small room test for measuring fire spread, heat release and gas emission levels. It is used to assess surfaces, finishes, linings and attachments to walls and ceilings.


Class	Fire, Smoke, Droplet			Description
A1	A1			
	A2-s1,d0	A2-s1,d1	A2-s1,d2	Non-combustible materials
A2	A2-s2,d0	A2-s2,d1	A2-s2,d2	Non-combustible materials
	A2-s3,d0	A2-s3,d1	A2-s3,d2	
Low Smoke	B-s1,d0	B-s1,d1	B-s1,d2	
В	B-s2,d0	B-s2,d1	B-s2,d2	
	B-s3,d0	B-s3,d1	B-s3,d2	Hardly combustible materials
	C-s1,d0	C-s1,d1	C-s1,d2	Hardiy combustible materials
C	C-s2,d0	C-s2,d1	C-s2,d2	
	C-s3,d0	C-s3,d1	C-s3,d2	
	D-s1,d0	D-s1,d1	D-s1,d2	
D	D-s2,d0	D-s2,d1	D-s2,d2	
	D-s3,d0	D-s3,d1	D-s3,d2	Normally flammable materials
Е	Е			
	E-d2			
F	F			Easily inflammable materials

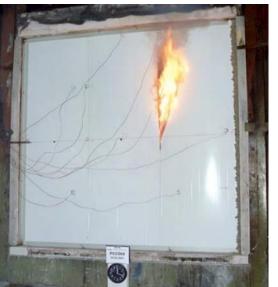
EN 13823 SBI & ISO 11925-2 Single Flame Source Test

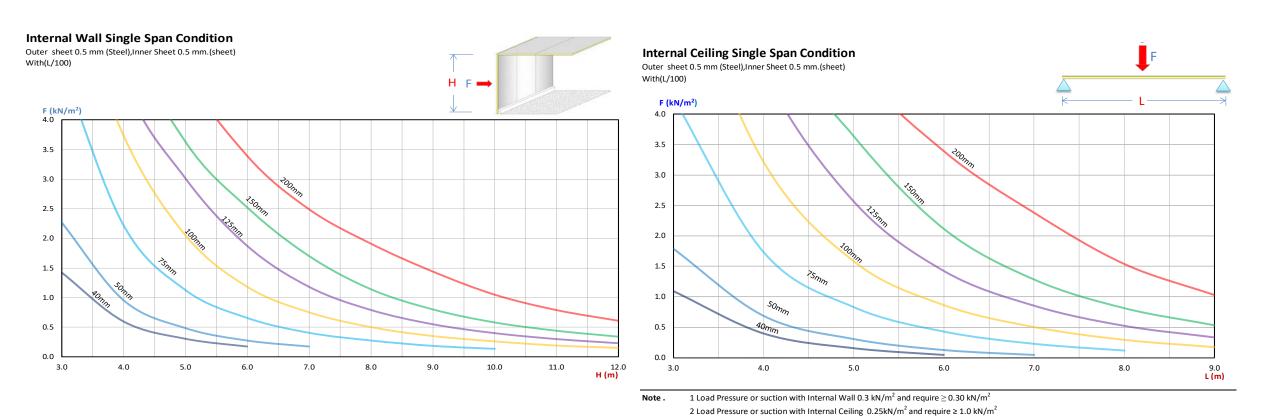




Fire Resistance Test

BS476 part 20/22


- Non-loadbearing Fire resistance testing for partition
- Integrity: Fire Rating



Vertical & Horizontal Span Suggestion

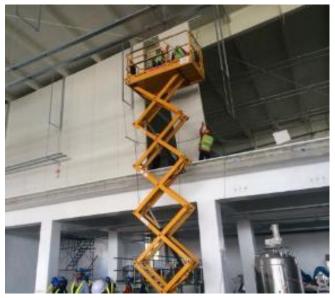
3. The table is for an internal temperature of 0°C

Calculated by Mr. Chaianuchit Srihard (Senior Professional Civil Engineer)

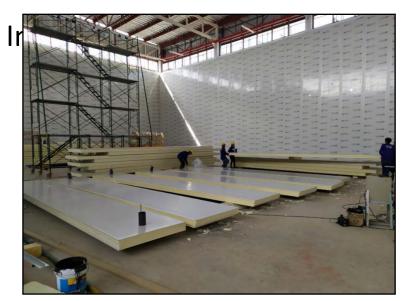
AGENDA

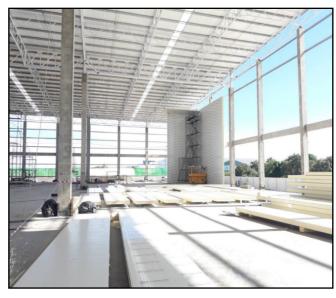
Foam Insulation in Building
Material

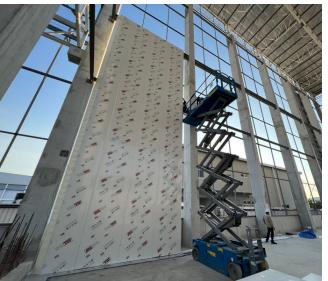
Insulated
Roof & Wall
Performance
& Safety


Installation & Reference Application

Installation






Sandwich Panel Installation

Industrial Roof

Data Center Hub

Customer	Kasetphan		
Project	True Service Center		
Location:	Pathum Thani		
Roof Profile	MKS720B +PUM50mm		
Size	500 SQM		
Year	2022		

Industrial PU Roof & Siding

Industrial PU Roof

Automotive Services PU Roof

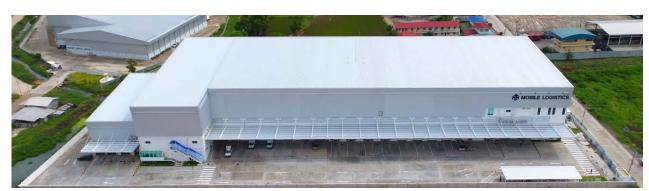
Customer	Car Dealers
Project	Show room & Service
Size	> 100,000 SQM
Year	2018-2023

Modern Market PU Roof

Academic Sector PU Roof & Siding

Customer	Owner
Project	International School
Size	29,150 SQM
Year	2020

Residential PU Roof



Food Processing & Cold Storage

High-rise Insulated Warehouse

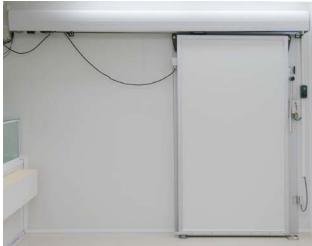
Cleanroom Electronics

Data Storage Center

Cleanroom Pharmaceutical

External Wall

Insulated Doors



Tiny House/ Knock-down House

Company Overview

30

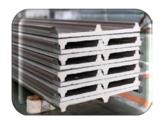
300

20 M

2.6 M

Years

Staffs


 m^2 Metal & Insulated Roof Delivered & Installed

 m^2

Sandwich Panel Delivered & Installed

Metal Roof

Insulated Roof

Purlin & Decking

Sandwich Panel

SILO & System

THANK YOU. ANY QUESTION?

Thana.c@munkongsteel.com

CONTACT CENTER: 098-272-1979